Predicting Financial Distress Using DEA and Multivariate Discriminant for Tourism, Restaurant, and Hotel Sector in Indonesia

Perina Amelia, Chandra Setiawan

Abstract


Financial distress is a condition in which a company experiences decline and difficulty to fulfil its financial obligations. Financial distress prediction aims to identify early warning indicators of impending financial disaster so businesses can begin financial reconstruction at the appropriate moment. This study aims to compare the statistically significant difference results of various financial prediction models and the level of accuracy of each model in 25 companies engaged in the hotel, restaurant, and tourism sectors in 2018-2021. By using Kruskal-Wallis Test, Mann-Whitney Post Hoc Test, and accuracy test to compare each model. The results of this study are based on the Kruskal-Wallis test, all models used are statistically significant differences. Meanwhile, when paired using the Mann-Whitney Post-Hoc Test, it was found that the Springate and Grover models did not have a statistically significant difference. In addition, the results of the test accuracy show that the DEA accuracy rate of 79%, and the Springate model with the lowest accuracy of 33%. The results interpret that each model has its own indicator for predicting financial distress. It is recommended in examining the financial distress of hotel, restaurant, and tourism companies using DEA model since it results in the highest accuracy rate. 

Keywords: DEA, financial distress, multivariate discriminant analysis


Full Text:

PDF

References


Acebeli, P. (2020). Perbandingan risiko kebangkrutan bank umum syariah (Studi pada bank umum syariah di Asia) (Undergraduate Thesis). Universitas Islam Negeri Syarif Hidayatullah, Jakarta.

Araghi, M., & Makvandi, S. (2013). Evaluating the technique of data envelopment analysis in predicting bankruptcy. Journal of Basic and Applied Scientific Research, 3(3), 519–527.

Banker, R. D., Charner, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Science, 30(9), 1078-1092.

Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units: A comment. European Journal of Operational Research, 15(3), 331–332. doi:10.1016/0377-2217(84)90101-2.

Ditasari, R. A., Triyono, & Sasongko, N. (2017). Comparison of Altman, Springate, Zmijewski and Grover models in predicting financial distress on companies of Jakarta Islamic Index (JII) on 2013-2017. Proceeding of ISETH (International Conference on Science, Technology, and Humanity) 2019 (pp. 490-504).

Espinoza, M. C., Nair, R. K., Mulani, R., Kaakandikar, R., Quispe, A., & Riva, F. (2021). The effects of Covid19 pandemic on tourism sector. International Journal of Tourism and Hospitality, 4(3), 115-121. doi:10.32535/ijthap.v4i3.1213

Farooq, U., Jibran Qamar, M. A., & Haque, A. (2018). A three-stage dynamic model of financial distress. Managerial Finance, 44(9), 1101–1116. doi:10.1108/MF-07-2017-0244

Indriyanti, M. (2019). The accuracy of financial distress prediction models: Empirical study on the world’s 25 biggest tech companies in 2015–2016 Forbes’s version. KnE Social Sciences, 3(11), 442-450. doi:10.18502/kss.v3i11.4025

Kemenparekraf. (2020). Rencana strategis 2020-2024. Retrieved from https://jdih.kemenparekraf.go.id/asset/data_puu/2020PMAbstrak012.pdf

Nachar, N. (2008). The Mann †Whitney U : A test for assessing whether two independent samples come from the same distribution. Tutorials in Quantitative Methods for Psychology, 4(1), 13–20.

Nur, T., & Panggabean, R. R. (2020). Accuracy of financial distress model prediction: The implementation of artificial neural network, logistic regression, and discriminant analysis. Proceedings of the 1st Borobudur International Symposium on Humanities, Economics and Social Sciences (BIS-HESS 2019) (pp. 402–406). doi:10.2991/assehr.k.200529.084

Prasetianingtias, E., & Kusumowati, D. (2019). Analisis perbandingan model Altman , Grover, Zmijewski dan Springate sebagai prediksi financial distress. Jurnal Akuntansi dan Perpajakan, 5(1), 9–14.

Purwanto, P., & Agustin, J. (2017). Financial performance towards value of firms in basic and chemicals industry. European Research Studies Journal, 20(2), 443–460.

Septiani, T. A., Siswantini, T., & Murtatik, S. (2021). Pengaruh likuiditas , leverage dan profitabilitas terhadap financial distress pada sektor industri barang konsumsi yang terdaftar di BEI the effect of liquidity , leverage , and profitability on financial distress in the consumption industry sector. E-Jurnal Apresiasi Ekonomi, 9(1), 100–111.

Setiawan, C, & Diana. (2020). Predicting financial distress using DEA and Altman’s model on steel and iron industry indonesia. Jurnal Manajemen Dan Bisnis Sriwijaya, 18(1), 57-70.

Setiawan, C., & Rafiani, T. T. (2021). Financial distress prediction models: Case study of textile industry in Indonesia. International Journal of Entrepreneurship, 25(2), 1–13.

Weiss, N. (2012). Introductory statistics. Wiley: USA.

WTTC. (2021). Economic Impact Reports. Retrieved from https://wttc.org/Research/Economic-Impact

Wu, Y. C., Chen, C. S., & Chan, Y. J. (2020). The outbreak of COVID-19: An overview. Journal of the Chinese Medical Association, 83(3), 217–220. doi:10.1097/JCMA.0000000000000270

Wulandari, R. S. (2016). perancangan prediksi financial distress pada perusahaan manufaktur yang terdaftar di Bursa Efek Indonesia. Journal of Research and Technology, 2(2), 23–31.

Yendrawati, R., & Adiwafi, N. (2020). Comparative analysis of Z-score, Springate, and Zmijewski models in predicting financial distress conditions. Journal of Contemporary Accounting, 2(2), 72-80.




DOI: https://doi.org/10.32535/jicp.v5i4.1936

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Perina Amelia, Chandra Setiawan

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Flag Counter

Published by:

AIBPM Publisher

Editorial Office:

JL. Kahuripan No. 9 Hotel Sahid Montana, Malang, Indonesia
Phone:
+62 341 366222
Email: journal.jicp@gmail.com
Website:http://ejournal.aibpmjournals.com/index.php/JICP

Supported by: Association of International Business & Professional Management

If you are interested to get the journal subscription you can contact us at admin@aibpm.org.

ISSN 2622-0989 (Print)
ISSN 2621-993X (Online)

DOI:Prefix 10.32535 by CrossREF

Journal of International Conference Proceedings (JICP) INDEXED:

 

In Process


This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.