Performance of K-Means and DBSCAN Algorithm in Clustering Gross Regional Domestic Product

Jonathan K. Wororomi, Caecilia Bintang Girik Allo, Nicea Roona Paranoan, Wickly Gusthvi

Abstract


Gross Regional Domestic Product (GRDP) is one of important indicator to determine the economic conditions of a region. GRDP are obtained from sum of value added produced by all unit of production in a region. This study use GRDP by production approach that grouped into seventeen categories of Industry. The government always put the big efforts to increase the economic growth after Covid-19 pandemic. According publication of BPS - Statistics Indonesian, in the year of 2021 and 2022 it’s growth between 3.70% and 5.31%. The aim of these study are determined the cluster GDRB based on province in Indonesia at current prices and analyses the performance of the cluster method. The results showed that by using the DBSCAN, two clusters were formed and one province can be detected as an outlier. On the other hands, performance of the method by K-Means showed two clusters. The silhouette value using K-Means is higher than the DBSCAN. For these case, the performance of K-Means is more appropriate than DBSCAN to use in clustering province in Indonesia based on GRDP at Current Market Prices. Moreover, performance of DBSCAN shows more sensitive on outliers detection.

Full Text:

PDF

References


Ahmar, A. S., Napitupulu, D., Raham, R., Hidayat, R., Sonatha, Y., & Azmi, Meri. (2018). Using K-Means Clustering to Cluster Provinces in Indonesia. Journal of Physics: Conference Series. 1028(012006). doi :10.1088/1742-6596/1028/1/012006

Allo, C. B.G., Putra, L. S.A., Paranoan, N. R., & Gunawan, V.A. (2023). Comparing Logistic Regression and Support Vector Machine in Breast Cancer Problem. Jambura: Journal of Probability and Statistics, 4(1), 1-8. doi:10.34312/jjps.v4i1.19246

Badan Pusat Statistik. (2023). Ekonomi Indonesia Tahun 2022 Tumbuh 5,31 Persen. Jakarta: Badan Pusat Statistik.

Badan Pusat Statistik. (2023). Produk Domestik Regional Bruto Provinsi-Provinsi di Indonesia Menurut Lapangan Usaha 2018 - 2022. Jakarta: Badan Pusat Statistik.

Bariklana, M., & Fauzan, A. (2023). Implementation of the DBSCAN Method for Cluster Mapping of Earthquake Spread Location. Barekeng: Journal of Mathematics and Its Applications, 17(2), 867-878. doi:10.30598/barekengvol17iss2pp0867-0878

Cataltas, M., Dogramaci, S., Yumusak, S., & Oztoprak, K. (2020). Extraction of Product Defects and Opinions from Customer Reviews by Using Text Clustering and Sentiment Analysis. Proceedings - 2020 IEEE International Conference on Big Data, Big Data 2020, 4529–4534. doi:10.1109/BigData50022.2020.9377851

Devi, N. M. A. S., Putra, I K. G. D., & Sukarsa, I. M. (2015). Implementasi Metode Clustering DBSCAN Pada Proses Pengambilan Keputusan. Lontar Komputer: Jurnal Ilmiah Teknologi Informasi, 6(3), 185-191. doi:10.24843/LKJITI.2015.v06.i03.p05

Dewi, C., Siam, E. P., Wijayanti, G. A., Putri, M., Aulia, N., & Nooraeni, R. (2021). Comparison of DBSCAN and K-Means Clustering for Grouping the Village Status in Central Java 2020. Jurnal Matematika, Statistika, dan Komputasi, 17(3), 394-404. doi:10.20956/j.v17i3.11704

Dista, T. M., & Abdulloh, F. F. (2022). Clustering Pengunjung Mall Menggunakan Metode K-Means dan Particle Swarm Optimization. Jurnal Media Informatika Budidarma, 6(3), 1339 – 1348. doi:10.30865/mib.v6i3.4172

Furqon, M. T., & Muflikhah, L. (2016). Clustering the Potential Risk of Tsunami using Density-Based Spatial Clustering of Application with Noise (DBSCAN). J. Environmental Engineering Sustain Technology, 3(1), 1-8. doi:10.21776/ub.jeest.2016.003.01.1

Han, J., Kamber, M., & Pei, J. (2012). Data Mining Concepts and Techniques (Third Edition). United States of America: Morgan Kaufmann.

Hidayah, Amelia. (2021). Implementing Data Clustering to Identify Capital Allocation for Small and Medium Sized Enterprises (SMEs). ASEAN Marketing Journal, X(1), 66-74. doi:10.21002/amj.v10i1.10627

Ikotun, A., et al. (2023). K-Means Clustering Algorithm: A Comprehensive Review, Variants Analysis, and Advances in the Era of Big Data. Information Sciences, 622, 178-210. doi:10.1016/j.ins.2022.11.139

Johnson, R. A., & Wichern, D. W. (2007). Applied Multivariate Statistical Analysis (6th Edition). New Jersey: Prentice Hall International Inc.

Kaufman, L., & Rousseeuw, P. J. (1990). Finding Groups in Data: An Introduction to Cluster Analysis. USA: Wiley Series in Probability and Statistics.

Li, Y., Yang, Z., Jiao, Z., & Li, Y. (2022). Partition KMNN-DBSCAN Algorithm and Its Application in Extraction of Rail Damage Data. Hindawi: Mathematical Problems in Engineering, 2022, 1 – 10. doi:10.1155/2022/4699573

Lincolin, Arsyad. (1997). Ekonomi Pembangunan (Edisi Ketiga). Yogyakarta: BP STIE YKPN.

Mulyo, I, A., & Heikal, J. (2022). Customer Clustering Using The K-Means Clustering Algorithm in Shopping Mall in Indonesia. Management Analysis Journal, 12(4), 365 – 371. doi:10.15294/MAJ.V11I4.61894

Muningsih, E., Maryani, I., & Handayani, V. R. (2021). Penerapan Metode K-Means da Optimasi Jumlah Cluster dengan Index Davies Bouldin untk Clustering Propinsi Berdasarkan Potensi Desa. Evolusi: Jurnal Sains dan Manajemen, 9(1), 95 - 100. doi:evolusi.v9i1.10428

Ningrum, A. F., & Ahadi, G. D. (2022). Analisis Cluster Kabupaten/Kota di Provinsi Jawa Timur Berdasarkan Laju Produk Domestik Regional Bruto Dengan Pendekatan K-Means. Jurnal Kompetitif: Media Informasi Ekonomi Pembangunan, Manajemen dan Akuntansi, 8(2), 60-76. doi:10.36679/kompetitif.v8i2.5

Oktaviana, Nurmalita, & Amalia, Nurisqi. (2018). Gross Regional Domestic Product Forecasts Using Trend Analysis: Case Study of Bangka Belitung Province. Jurnal Ekonomi & Studi Pembangunan, 19(2), 142-151. doi:10.18196/jesp.19.2.5005

Onwukwe, C. E., & Ezeorah, J. N. (2009). Application of Single Linkage Clustering Method in The Analysis of Growth Rate of Gross Domestic Product (GDP) at 1990 Constant Basic Prices (Million Naira). Global Journal of Mathematical Sciences, 8(2), 83-93. doi:10.4314/gjmas.v8i2.53751

Pamuji, G. C., & Rongtao, H. (2020). A Comparison study of DBScan and K-Means Clustering in Jakarta rainfall based on the Tropical Rainfall Measuring Mission (TRMM) 1998-2007. IOP Conference Series: Materials Science and Engineering, 879(1), 012057. doi:10.1088/1757-899X/879/1/012057

Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the Interpretation and Validation of Cluster Analysis. Journal of Computational and Applied Mathematics, 20, 53 – 65. 10.1016/0377-0427(87)90125-7

Wei, Y., Lao, Y., Sato, Y., & Han, D. (2019). Product-review classification combining multiple clustering algorithms. ACM International Conference Proceeding Series, 133–136. doi:10.1145/3338188.3338211

Zhang, Yan. (2022). DBSCAN Clustering Algorithm Based on Big Data Is Applied in Network Information Security Detection. Security and Communication Networks, 2022, 1 – 8. doi:10.1155/2022/9951609

Zhang, Mingrui. (2019). Use Density-Based Spatial Clustering of Applications with Noise (DBSCAN) Algorithm to Identify Galaxy Cluster Members. IOP Conference Series: Earth and Environmental Science, 252(042033), 1 – 5. doi:10.1088/1755-1315/252/4/042033




DOI: https://doi.org/10.32535/jicp.v6i5.2710

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Jonathan K. Wororomi, Caecilia Bintang Girik Allo, Nicea Roona Paranoan, Wickly Gusthvi

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Flag Counter

Published by:

AIBPM Publisher

Editorial Office:

JL. Kahuripan No. 9 Hotel Sahid Montana, Malang, Indonesia
Phone:
+62 341 366222
Email: journal.jicp@gmail.com
Website:http://ejournal.aibpmjournals.com/index.php/JICP

Supported by: Association of International Business & Professional Management

If you are interested to get the journal subscription you can contact us at admin@aibpm.org.

ISSN 2622-0989 (Print)
ISSN 2621-993X (Online)

DOI:Prefix 10.32535 by CrossREF

Journal of International Conference Proceedings (JICP) INDEXED:

 

In Process


This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.