Consumer Attitude and Intention Toward AI-Based Smart Ordering and Delivery Systems in the Fast-Food Industry

Azura Abdullah Effendi, Tek Yew Lew, Wei Ning Ooi, Soak Suan P’ng, Mei Shan Poh, Puteri Balqis Binti Hamizan, Arun Singh Tomar, Daisy Mui Hung Kee

Abstract


The increasing use of artificial intelligence (AI) in fast-food ordering and delivery systems has transformed service processes, yet consumer adoption remains uneven. This study examines the factors influencing consumer attitude and behavioral intention toward AI-based smart ordering and delivery systems in the fast-food industry, using McDonald’s AI-based Smart Ordering and Delivery System in Malaysia as the empirical context. Using a quantitative approach, data were collected from 150 consumers in Malaysia and analyzed using multiple regression analysis. The results show that social influence has a significant positive effect on consumer attitude (? = 0.313, p < 0.001), while ease of use, enjoyment, perceived convenience, and trust do not significantly affect attitude. For behavioral intention, perceived convenience (? = 0.218, p < 0.01), social influence (? = 0.291, p < 0.001), and trust (? = 0.248, p < 0.01) are significant predictors, whereas consumer attitude is not (? = 0.066, p > 0.05). The models explain 29.8% of the variance in consumer attitude and 44.5% of the variance in behavioral intention. These findings suggest that adoption of AI-based ordering systems in fast-food contexts is driven more by social endorsement and functional considerations than by attitudinal evaluation.


Keywords


Artificial Intelligence; Behavioral Intention; Consumer Attitude; Fast-Food Industry; Smart Ordering Systems

Full Text:

PDF

References


Adeoye, Y., Onotole, E. F., Ogunyankinnu, T., Aipoh, G., Osunkanmi, A. A., & Egbemhenghe, J. (2025). Artificial intelligence in logistics and distribution: The function of AI in dynamic route planning for transportation, including self-driving trucks and drone delivery systems. World Journal of Advanced Research and Reviews, 25(2), 155–167. https://doi.org/10.30574/wjarr.2025.25.2.0214

Afroogh, S., Akbari, A., Malone, E., Kargar, M., & Alambeigi, H. (2024). Trust in AI: Progress, challenges, and future directions. Humanities and Social Sciences Communications, 11, Article 1568. https://doi.org/10.1057/s41599-024-04044-8

Alshakhsi, S. A., Almourad, B., Babkir, A., & Ali, R. (2025). Designing AI to foster acceptance: Do freedom to choose and social proof impact AI attitudes among British and Arab populations? Behaviour & Information Technology. Advance online publication. https://doi.org/10.1080/0144929X.2025.2477054

Alter Solutions. (2023). Case study: Personalising the customer experience with AI. Alter Solutions. https://www.alter-solutions.com/case-study-mcdonalds-artificial-intelligence

An, S., Eck, T., & Yim, H. (2023). Understanding consumers’ acceptance intention to use mobile food delivery applications through an extended technology acceptance model. Sustainability, 15(1), 832. https://doi.org/10.3390/su15010832

Bhasin, H. (2023, July 25). What is consumer behavior? Definition, example, types & factors. Marketing91. https://www.marketing91.com/consumer-behavior/

Bradley, T. (2024, October 11). How AI is revolutionizing customer experience. Forbes. https://www.forbes.com/sites/tonybradley/2024/10/11/how-ai-is-revolutionizing-customer-experience/

Chi, N. T. K., & Vu, N. H. (2022). Investigating customer trust in artificial intelligence: The role of anthropomorphism, empathy response, and interaction. CAAI Transactions on Intelligence Technology, 8(1), 260–273. https://doi.org/10.1049/cit2.12133

Chia, X. R., Kee, D. M. H., Khor, S. T., Chin, K. Y., Lok, T. X., Almutairi, H. A., …, & Kulharni, S. (2020). Contributing factors to organizational success: A case study of McDonald’s. International Journal of Tourism and Hospitality in Asia Pacific, 3(2), 38–47. https://doi.org/10.32535/ijthap.v3i2.821

Choung, H., David, P., & Ross, A. (2022). Trust in AI and its role in the acceptance of AI technologies. International Journal of Human-Computer Interaction, 39(9), 1727–1739. https://doi.org/10.1080/10447318.2022.2050543

Chowdhury, R. (2023). Impact of perceived convenience, service quality, and security on consumers’ behavioural intention towards online food delivery services: The role of attitude as mediator. SN Business & Economics, 3(1), Article 22. https://doi.org/10.1007/s43546-023-00422-7

Davis, F. D. (1989). Technology acceptance model: TAM. Al-Suqri, MN, Al-Aufi, AS: Information Seeking Behavior and Technology Adoption, 205(219), 5.

Dilip, D., Sinha, R., Wei, O. L., Kee, D. M. H., Leei, O. J., Shuang, P. K., …, & Boadu, E. (2021). Effective/differentiating marketing strategies of McDonald’s in Malaysia and Indonesia. Journal of the Community Development in Asia, 4(1), 16–33. https://doi.org/10.32535/jcda.v4i1.995

He, L., Zhang, J., & Chen, Y. (2022). Exploring the impact of artificial intelligence on consumers’ purchase intention in e-retailing. Journal of Retailing and Consumer Services, 65, 102867. https://doi.org/10.1016/j.jretconser.2021.102867

Jang, H. W., Moon, C., Jung, H. S., Cho, M., & Bonn, M. A. (2024). Normative and informational social influence affecting digital technology acceptance of senior restaurant diners: A technology learning perspective. International Journal of Hospitality Management, 116, 103626. https://doi.org/10.1016/j.ijhm.2023.103626

Kee, D. M. H., Ang, V. W. N., Lee, Y. Y., Laneishwar, A., Vehlan, L. S. S. V., Lee, L. X., & Lee, S. M. (2024). Golden arches going green: The impact of McDonald’s sustainability achievements on public image. Advances in Global Economics and Business Journal, 5(1), 27–43.

Kee, D. M. H., Ho, S. L., Ho, Y. S., Lee, T. W., Ma, H., & Yin, Y. (2021). Critical success factors in the fast food industry: A case of McDonald’s. International Journal of Tourism and Hospitality in Asia Pacific, 4(2), 124–143. https://doi.org/10.32535/ijthap.v4i2.1061

Kee, D. M. H., Liem, G. S., Yuan, N. Z., Ni, N. L. Y., Wen, N. K., Fang, N. S., & Muhsyi, U. A. (2023). The influence of customer satisfaction, brand trust and brand loyalty on purchase intention: A study of McDonald’s in Malaysia. International Journal of Tourism & Hospitality in Asia Pacific, 6(2), 88–101. https://doi.org/10.32535/ijthap.v6i2.2343

Khan, N. R. M., Ibrahim, M. A., Mohd Ruslan, R. A., Abd Hamid, N. H., & Abdullah, M. F. (2024). The impact of restaurant online food delivery (OFD) service quality on customers’ repurchase intention: A conceptual framework. Information Management and Business Review, 16(3S[a]), 963–971. https://doi.org/10.22610/imbr.v16i3S(I)a.4183

Khoso, A. A., & Hussain, S. (2025). Evaluating the effectiveness of AI-driven personalized recommendations in enhancing guest experiences in Jeddah’s restaurants. International Research Journal of Management and Social Sciences, 6(2), 1–15. https://irjmss.com/index.php/irjmss/article/view/451

Liou, Z. Y., Lok, Y. H., Teoh, K. B., Lim, J. T., Lim, K. E., Lim, P. E., & Kee, D. M. H. (2024). Influencing factors on customer behavioral intentions to use a food delivery app: A study of GrabFood in Malaysia. Advances in Global Economics and Business Journal, 5(1), 1–14. https://doi.org/10.51748/agebj.v5i1.92

Lok, Y. H., Jian, O. Z., Chaudhary, M. K., Azhar, N. A. B. K., Azizi, N. Z. B., Azman, N. A. B., Hassan, N. H. B., & Kee, D. M. H. (2024). A case study: How social media influences consumer behavior towards McDonald’s. International Journal of Accounting & Finance in Asia Pacific, 7(2), 102–115. https://doi.org/10.32535/ijafap.v7i2.3250

Nagy, S., & Hajdu, N. (2021). Consumer acceptance of the use of artificial intelligence in online shopping: Evidence from Hungary. Amfiteatru Economic, 23(56), 155–173. https://doi.org/10.24818/EA/2021/56/155

Nasir, M. A., Rana, N. P., & Dwivedi, Y. K. (2023). Impact of AI-based personalization on customer trust and loyalty in digital services. Foresight, 25(2), 137–150. https://doi.org/10.1108/FS-10-2021-0218

Ravi, T., Yusof, R., Koay, L. K., Teoh, Y. T., Thin, M. Y., Donold, T. A. A., Jannah, N. A. R., Mittal, P., Srivastava, R., & Kee, D. M. H. (2024). Utilizing artificial intelligence (AI) in customers’ purchase intentions on online food delivery services. International Journal of Tourism & Hospitality in Asia Pacific, 7(2), 120–133. https://doi.org/10.32535/ijthap.v7i2.3212

Tarinc, A., Aytekin, A., Ozbek, O. T., Ergün, G. S., Keles, A., Uslu, F., Keles, H., & Yayla, O. (2023). How do food neophobia and neophilia moderate the effect of local food quality on dining satisfaction and post-dining behavioral intention? Sustainability, 15(12), 9510. https://doi.org/10.3390/su15129510

Troise, C., O'Driscoll, A., Tani, M., & Prisco, A. (2021). Online food delivery services and behavioural intention–a test of an integrated TAM and TPB framework. British food journal, 123(2), 664-683. https://doi.org/10.1108/BFJ-05-2020-0418

Widiar, G., Yuniarinto, A., & Yulianti, I. (2022). Perceived ease of use’s effects on behavioral intention mediated by perceived usefulness and trust. Interdisciplinary Social Studies, 2(3), 1833–1841.

Wolfe, A. (2024, September 9). AI as a tool to boost customer satisfaction. Hospitality Technology. https://hospitalitytech.com/ai-tool-boost-customer-satisfaction

Yaiprasert, C., & Hidayanto, A. N. (2024). AI-powered personalization in the digital age: Ensemble innovation personalizes food recommendations. Journal of Open Innovation: Technology, Market, and Complexity, 10, 100261. https://doi.org/10.1016/j.joitmc.2024.100261

Yi, M., & Choi, H. (2023). What drives the acceptance of AI technology?: the role of expectations and experiences. arXiv preprint arXiv:2306.13670. https://doi.org/10.48550/arXiv.2306.13670

Yo, P. W., Kee, D. M. H., Yu, J. W., Hu, M. K., Jong, Y. C., Ahmed, Z., Gwee, S. L., Gawade, O., & Nair, R. K. (2021). The influencing factors of customer satisfaction: A case study of Shopee in Malaysia. Estudios de Economía Aplicada, 39(12), 1–16. https://doi.org/10.25115/eea.v39i12.6839




DOI: https://doi.org/10.32535/ijabim.v10i3.4325

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Azura Abdullah Effendi, Tek Yew Lew, Wei Ning Ooi, Soak Suan P’ng, Mei Shan Poh, Puteri Balqis Binti Hamizan, Arun Singh Tomar, Daisy Mui Hung Kee

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

International Journal of Applied Business and International Management (IJABIM)

ISSN 2614-7432 (Print) | ISSN 2621-2862 (Online)

DOI Prefix: 10.32535 by CrossRef

Published by AIBPM Publisher

JL. Kahuripan No. 9, Hotel Sahid Montana, Malang, Indonesia

Email: journal.ijabim@gmail.com

Phone: +62 341 366222

Website: https://aibpmpublisher.com/

Governed by

Association of International Business and Professional Management

Email: admin@aibpm.org

Website: https://www.aibpm.org/

Indexed by

SINTA Garuda Google Scholar Dimensions ASEAN Citation Index

Visitor Statistics

Flag Counter

Web Analytics

View IJABIM Stats

Follow Us: